A short proof of König's matching theorem

نویسنده

  • Romeo Rizzi
چکیده

We give a short proof of the following basic fact in matching theory: in a bipartite graph the maximum size of a matching equals the minimum size of a node cover. c © 2000 John Wiley & Sons, Inc. J Graph Theory 33: 138–139, 2000

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A SHORT PROOF FOR THE EXISTENCE OF HAAR MEASURE ON COMMUTATIVE HYPERGROUPS

In this short note, we have given a short proof for the existence of the Haar measure on commutative locally compact hypergroups based on functional analysis methods by using Markov-Kakutani fixed point theorem.

متن کامل

Groups with one conjugacy class of non-normal subgroups‎ - ‎a short proof

For a finite group $G$ let $nu(G)$ denote the number of conjugacy classes of non-normal subgroups of $G$. We give a short proof of a theorem of Brandl, which classifies finite groups with $nu(G)=1$.

متن کامل

A Tree Version of Konig's Theorem

König's theorem states that the covering number and the matching number of a bipartite graph are equal. We prove a generalisation, in which the point in one fixed side of the graph of each edge is replaced by a subtree of a given tree. The proof uses a recent extension of Hall's theorem to families of hypergraphs, by the first author and P. Haxell [3]. 1. Width and matching width of families of...

متن کامل

A new proof for the Banach-Zarecki theorem: A light on integrability and continuity

To demonstrate more visibly the close relation between thecontinuity and integrability, a new proof for the Banach-Zareckitheorem is presented on the basis of the Radon-Nikodym theoremwhich emphasizes on measure-type properties of the Lebesgueintegral. The Banach-Zarecki theorem says that a real-valuedfunction $F$ is absolutely continuous on a finite closed intervalif and only if it is continuo...

متن کامل

Extremal Hypergraphs for Ryser’s Conjecture I: Connectedness of Line Graphs of Bipartite Graphs

Ryser’s Conjecture states that any r-partite r-uniform hypergraph has a vertex cover of size at most r− 1 times the size of the largest matching. For r = 2, the conjecture is simply König’s Theorem. It has also been proven for r = 3 by Aharoni using a beautiful topological argument. This paper is the first part of the proof of a characterization of those 3-uniform hypergraphs for which Aharoni’...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Graph Theory

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2000